128=16(t)^2+240(t)

Simple and best practice solution for 128=16(t)^2+240(t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 128=16(t)^2+240(t) equation:



128=16(t)^2+240(t)
We move all terms to the left:
128-(16(t)^2+240(t))=0
We get rid of parentheses
-16t^2-240t+128=0
a = -16; b = -240; c = +128;
Δ = b2-4ac
Δ = -2402-4·(-16)·128
Δ = 65792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{65792}=\sqrt{256*257}=\sqrt{256}*\sqrt{257}=16\sqrt{257}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-16\sqrt{257}}{2*-16}=\frac{240-16\sqrt{257}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+16\sqrt{257}}{2*-16}=\frac{240+16\sqrt{257}}{-32} $

See similar equations:

| 0=-(2+3k)-(1-3k) | | 3g–-4=19 | | 4g=2g+8 | | (4k+1)^2+8(4k+1)+15=0 | | 128=16^2+240(t) | | x^2-120x-2700=0 | | 5x-2x=-12-3x | | 11/16z+7/8z=5/16 | | A=1/2*3.14*r^2 | | 2/3x-1/6=1/2x+5-6 | | 27-5a/2=6 | | 128=12^2+240(t) | | 10m-(2/5)=9(3/5) | | 4x+x−3=0 | | 13-5x=2x-1 | | 4a^2+8a+12=0 | | -1/3(9x+42)-5x=70 | | 3(3x+5)=9x-8 | | x+12=-81 | | -3=2a+3-4a | | 9r+r-6=54 | | 2(2t+2)=4(t-15) | | 4k^2+40k+24=0 | | -0.7x+2.53=-0.5x+7.33 | | w+403=177 | | 0.16666d+0.66666=0.25(d-2) | | -2d+1=3 | | -1/3(9c+42)-5=70 | | -5+7x=-7x-5 | | 2x2+x−3=0 | | 1.8x=0.54 | | 0.16666666666666666666666666666666d+0.66666666666666666666666666666666=0.25(d-2) |

Equations solver categories